Generalized Vietoris Bisimulations

نویسندگان

  • Sebastian Enqvist
  • Sumit Sourabh
چکیده

We introduce and study bisimulations for coalgebras on Stone spaces [14]. Our notion of bisimulation is sound and complete for behavioural equivalence, and generalizes Vietoris bisimulations [3]. The main result of our paper is that bisimulation for a Stone coalgebra is the topological closure of bisimulation for the underlying Set coalgebra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vietoris Bisimulations

Building on the fact that descriptive frames are coalgebras for the Vietoris functor on the category of Stone spaces, we introduce and study the concept of a Vietoris bisimulation between two descriptive modal models, together with the associated notion of bisimilarity. We prove that our notion of bisimilarity, which is defined in terms of relation lifting, coincides with Kripke bisimilarity (w...

متن کامل

A Vietoris Mapping Theorem for Homotopy

Let X and Y be compact metric spaces and let a map /: X—> Y be onto. The Vietoris Mapping Theorem as proved by Vietoris [8] states that if for all Ofkrfkn-1 and all yEY, flr(/_1(y)) =0 (augmented Vietoris homology mod two) then the induced homomorphism /*: Hr(X)-+Hr(Y) is an isomorphism onto for rfkn — l and onto for r=n. Begle [l; 2] has generalized this theorem to nonmetric spaces and more ge...

متن کامل

The connected Vietoris powerlocale

The Vietoris powerlocale V X is a point-free analogue of the Vietoris hyperspace. In this paper we introduce and study a sublocale V X whose points are those points of V X that (considered as sublocales of X) satisfy a constructively strong connectedness property. V c is a strong monad on the category of locales. The strength gives rise to a product map × : V X × V Y → V (X × Y ), showing that ...

متن کامل

Generalized Priestley Quasi-Orders

We introduce generalized Priestley quasi-orders and show that subalgebras of bounded distributive meet-semilattices are dually characterized by means of generalized Priestley quasi-orders. This generalizes the well-known characterization of subalgebras of bounded distributive lattices by means of Priestley quasiorders (Adams, Algebra Univers 3:216–228, 1973; Cignoli et al., Order 8(3):299– 315,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1412.4586  شماره 

صفحات  -

تاریخ انتشار 2014